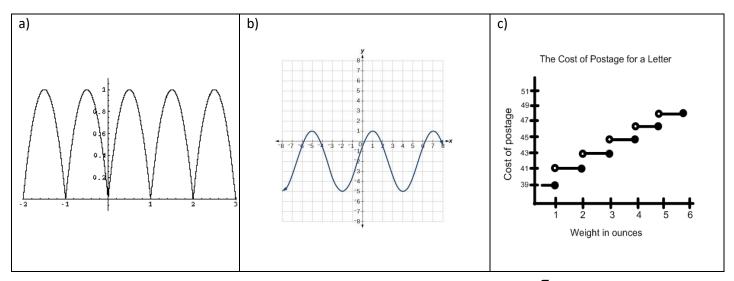
4.4 Graphs of Sine and Cosine Functions

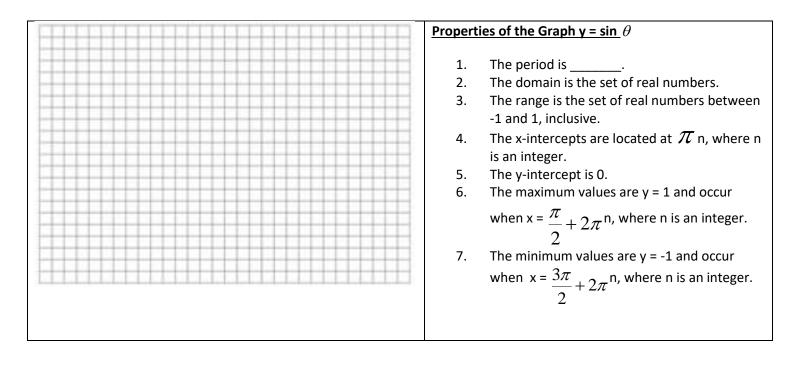
If the values of a function are the same for each given interval of the domain, the function is said to be **periodic**. The interval is the **period** of the function. (smallest interval of x that contains one copy of the repeating pattern)

Ex 1: Determine if each function is periodic. If so, state the period.

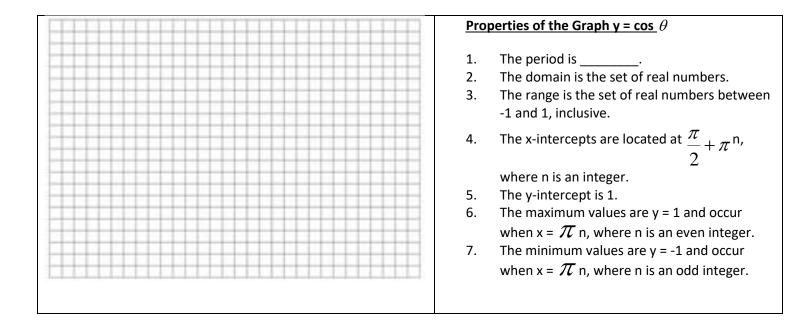


Ex 2: Graph the functions $y = \sin \theta$ and $y = \cos \theta$ from -2π to 2π in multiples of $\frac{\pi}{4}$.

θ	-2π	$\frac{-7\pi}{4}$	$\frac{-3\pi}{2}$	$\frac{-5\pi}{4}$	$-\pi$	$\frac{-3\pi}{4}$	$\frac{-\pi}{2}$	$\frac{-\pi}{4}$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
sin θ																	



θ	-2π	$\frac{-7\pi}{4}$	$\frac{-3\pi}{2}$	$\frac{-5\pi}{4}$	$-\pi$	$\frac{-3\pi}{4}$	$\frac{-\pi}{2}$	$\frac{-\pi}{4}$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
$\cos \theta$																	



You will be studying the graphic effect of each of the constants *a*, *b*, *c*, and *d* in the equations of the forms:

 $y = d + a \sin(bx - c)$ and $y = d + a \cos(bx - c)$.

The constant factor *a* in $y = a \sin x$ acts as a scaling factor – a _______ or ______ of the basic sine curve. When |a| > 1, the basic sine curve is ______. When |a| < 1, the basic sine curve is ______. The result of this is that the graph of $y = a \sin x$ ranges between ______ and ______ instead of between 1 and -1. The absolute value of *a* is called the <u>amplitude</u> of the function $y = a \sin x$. The range of the function $y = a \sin x$ for a > 0 is $-a \le y \le a$.

Definition of Amplitude of Sine and Cosine Curves								
The amplitude of $y = a \sin x$ and $y = a \cos x$ represents half the distance between the maximum and minimum values of the function and is given by:								
*amplitude can never be negative								

When sketching the graphs of the basic sine and cosine functions by hand use the **five key points** in one period of each graph (intercepts, maximum, and minimum).

<u>Ex:1</u> a.) Sketch the graph of $y = 3\cos x$ on the interval $\left[-\frac{5\pi}{2}, \frac{5\pi}{2}\right]$.

b.) Sketch the graph of $y = 2 \sin x$ on the interval $[-\pi, 4\pi]$.

<u>Ex:2</u> On the same coordinate axes, sketch the graphs of $f(x) = 2 \sin x$ and $g(x) = \frac{1}{3} \sin x$ for one full cycle of output values $[0, 2\pi]$.

We know that the graph of y = -f(x) is a <u>reflection</u> in the x-axis of the graph of y = f(x). Therefore, the graph of $y = -3\cos x$ is a reflection in the x-axis of the graph of $y = 3\cos x$.

Because $y = a \sin x$ completes one cycle from x = 0 to $x = 2\pi$, it follows that $y = a \sin bx$ completes one cycle from x = 0 to $x = \frac{2\pi}{b}$, where *b* is a positive real number.

Period of Sine and Cosine Functions

Let *b* be a positive real number. The **period** of $y = a \sin bx$ and $y = a \cos bx$ is given by:

Period =
$$\frac{2\pi}{b}$$
.

ALWAYS LABEL BOTH AXES! CRITICAL POINTS MUST BE IDENTIFIED

<u>Ex:3</u> a.) Sketch the graph of $y = \cos \frac{x}{2}$ for one full cycle of output values (one period).

b.) Sketch the graph of $y = \sin \frac{x}{3}$ for one full cycle of output values (one period).

Remember that with the sine and cosine functions the period = $\frac{2}{2}$	$\frac{2\pi}{b}$ where b is the coefficient of the
argument.	-
When $0 < b < 1$, the period of $y = a \sin bx$ is	2π and represents a
of the graph of $y = a \sin x$.	
When $b > 1$, the period of $y = a \sin bx$ is	2π and represents a
of the graph of $y = a \sin x$.	
The constant <i>c</i> in the general equations $y = a \sin(bx - c)$ and $y = a \sin(bx - c)$	$a\cos(bx-c)$ creates
(shifts) of the ba	sic sine and cosine curves.
The period of $y = a \sin(bx - c)$ is $\frac{2\pi}{b}$, and the graph of $y = a \sin b$. number $\frac{c}{b}$ is called the	<i>b</i>
Graphs of Sine and Cosine Functions	
The graphs of $y = a \sin(bx - c)$ and $y = a \cos(bx - c)$ have the following	g characteristics.
(Assume b > 0.)	
Amplitude = $ a $ Period = $\frac{2\pi}{b}$	
The left and right endpoints of one-cycle interval can be determined by s $bx-c=0$ and $bx-c=2\pi$.	olving the equations

Horizontal Translations

<u>Ex:4</u> a.) Sketch the graph of $y = 2\sin\left(x - \frac{\pi}{2}\right)$ for one full cycle of output values (one period).

Label the key points on the graph.

Amp =Per =Phase Shift =

b.) Sketch the graph of $y = 2\cos\left(x - \frac{\pi}{2}\right)$ for two full cycles of output values (two periods).

Label the key points on the graph.

Amp =Per =Phase Shift =

<u>Ex:5</u> a.) State the amplitude, period and the phase shift of $y = 2\sin(3\pi x - 2\pi)$

Amp =Per =Phase Shift =

b.) State the amplitude, period, and the phase shift of $y = -3\cos(2\pi x + 4\pi)$

Amp =Per =Phase Shift =

The final type of transformation is the ______ caused by the constant *d* in the equations

 $y = d + a\sin(bx - c)$ and $y = d + a\cos(bx - c)$.

The shift d units up for d > 0 and d units down for d < 0. In other words, the graph oscillates about the horizontal line y = d instead of about the x-axis.

Vertical Translations

<u>Ex:6</u> Sketch the graph of $y = 4 - \cos 3x$ for two full cycles of output values (two periods).

Label the key points on the graph.

Phase Shift = Vertical Shift = Amp = Per =